Investigation of road train divergent stability loss when moving along a program trajectory

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.150924

Keywords:

characteristic equation, first Lyapunov method, parameter continuation method, bifurcation set, divergent stability loss

Abstract

The object of research is transport driven multilink wheel systems. In the development of the realized possibility of controlled movement of a semi-trailer truck along a program trajectory, the possibility of constructing a bifurcation set by a velocity parameter is considered. The velocity value is calculated for each discrete value of the calculated real trajectory. The trajectory can be specified in an explicit, implicit, parametric form or by the law of variation of the curvature radius. The study of this parameter is one of the most problematic places for analyzing the stability of the movement of a road train.

Changes in this parameter at certain values, called bifurcation, lead to changes in the qualitative structure of the solutions of the system of differential equations and, as a result, divergent stability of the road train. For such an investigation of the phenomenon, the method of continuation by parameter and the first Lyapunov method are applied.

During the research, many bifurcation velocity values are obtained. This is due to the fact that the proposed approach has a number of features, in particular, an iteration is performed for all control parameters of the program trajectory, and for each such value, the velocity has been iterated until its bifurcation value is reached.

At each iteration, the roots of the characteristic equation are checked for the presence of at least one root with a positive real part, which corresponds to the bifurcation value of the parameter of the velocity of a road train according to Lyapunov. Due to this, it is possible to obtain this set by an exclusively analytical method using computer calculations, without resorting to the use of graphic-analytical methods.

Obtaining these bifurcation sets can practically be used both to limit the velocity of a road train and to warn of its excess. Compared with similar known methods, this provides such advantages as a significant acceleration of the construction of this set and, as a result, its use in real time.

Author Biographies

Vasyl Popivshchyi, Zaporizhzhya State Engineering Academy, 226, Sobornyi аve., Zaporizhzhya, Ukraine, 69006

PhD, Associate Professor

Department of Computerized System Software

Anatoliy Bezverkhyi, Zaporizhzhya State Engineering Academy, 226, Sobornyi аve., Zaporizhzhya, Ukraine, 69006

PhD, Associate Professor

Department of Computerized System Software

Dmitry Tatievskyi, Zaporizhzhya State Engineering Academy, 226, Sobornyi аve., Zaporizhzhya, Ukraine, 69006

Postgraduate Student

Department of Computerized System Software

References

  1. Verbitskiy, V. G., Polyakova, N. P., Tatievskiy, D. N. (2018). Issledovanie vozmozhnosti realizatsii upravlyaemogo dvizheniya avtopoezda vdol' programmnoy krivoy. Vchenі zapiski Tavrіys'kogo natsіonal'nogo unіversitetu іmenі V. І. Vernads'kogo. Serіya: Tekhnіchnі nauki, 29 (6 (68)), 2–4.
  2. Verbitskiy, V. G., Lobas, L. G. (1996). Veshhestvennye bifurkatsii dvukhzvennykh sistem s kacheniem. Prikladnaya matematika i mekhanika, 3, 418–425.
  3. Verbitskiy, V. G., Lobas, L. G. (1991). Bifurkatsii statsionarnykh sostoyaniy svyazki absolyutno tverdykh i katyashhikhsya uprugikh tel. Izvestiya AN SSSR. Mekhanika tverdogo tela, 3, 30–37.
  4. Lobas, L. G., Verbitskiy, V. G. (1990). Kachestvennye i analiticheskie metody v dinamike kolesnykh mashin. Kyiv: Naukova dumka, 216.
  5. Verbitsky, V., Bezverkhyi, А., Tatievskyi, D. (2018). Handling Analysis and Defining Conditions of Dangerous-Sfe Divergent Stability Loss of a Two-Link Road Train Nonlinear Model. Mathematical Modelling and Applications, 3 (2), 31–38. URL: http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=247&doi=10.11648/j.mcs.20180301.13
  6. Verbitskiy, V. G., Zagorodnov, M. I. (2007). Opredelenie i analiz ustoychivosti krugovykh statsionarnykh rezhimov dvizheniya modeli sedel'nogo avtopoezda. Vіsnik Donets'kogo іn-tu avtomob. transportu, 1, 10–19.
  7. Verbitskiy, V. G., Lobas, L. G. (1990). Mnogoobraziya statsionarnykh sostoyaniy dvukhzvennogo avtopoezda i ikh ustoychivost'. Prikladnaya mekhanika, 12, 97–104.
  8. Moysya, D. L., Bumaga, A. D. (2007). Opredelenie manevrennosti i analiz ustoychivosti dvizheniya modeli sedel'nogo avtopoezda. Vіsnik Donets'kogo іn-tu avtomob. transport, 3, 10–19.
  9. Moysya, D. L. (2008). Analiz statsionarnykh sostoyaniy i ikh ustoychivosti trekhzvennogo avtopoezda s bezopornym promezhutochnym zvenom avtopoezda. Vіstnik Natsіonal'nogo transportnogo unіversitetu, 17, 8–13.
  10. Verbytskyi, V. H., Moisia, D. L. (2010). Matematychna model sidelnoho avtopoizda z kerovanym napivprychepom. Mizhvuzivskyi zbirnyk «Naukovi notatky», 28, 98–103.
  11. Kaneko, T., Kageyama, I. (2003). A study on the braking stability of articulated heavy vehicles. JSAE Review, 24 (2), 157–164. doi: http://doi.org/10.1016/s0389-4304(03)00007-9
  12. Bondarenko, A. Ye., Kuplinov, A. V., Moisia, D. L., Makiiov, M. M., Kondratev, V. V. (2010). Analiz rezultativ doslidzhennia kursovoi stiikosti rukhu eksperymentalnoho avtopoizda v stalomu rusi. Visnyk Donetskoi akademii avtomobilnoho transport, 2, 53–61.
  13. Ei-Gindy, M., Mrad, N., Tong, X. (2001). Sensitivity of rearward amplication control of a truck/full trailer to tyre cornering stiffness variations. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 215 (5), 579–588. doi: http://doi.org/10.1243/0954407011528176
  14. Abdulwahab, A. (2018). Investigations on the Roll Stability of a Semitrailer Vehicle Subjected to Gusty Crosswind Aerodynamic Forces: Doctoral thesis. University of Huddersfield, 239.
  15. Ding, N., Shi, X., Zhang, Y., Chen, W. (2014). Analysis of bifurcation and stability for a tractor semi-trailer in planar motion. Vehicle System Dynamics, 52 (12), 1729–1751. doi: http://doi.org/10.1080/00423114.2014.960431
  16. di Bernardo, M.; Chen, G., Hill, D. J., Yu, X. (Eds.) (2003). Bifurcation analysis for control systems applications. Bifurcation control theory and application. Heidelberg: Springer-Verlag, 249–264.
  17. Catino, B., Santini, S., di Bernardo, M. (2003). MCS adaptive control of vehicle dynamics: an application of bifurcationtechniques to control system design. 42nd IEEE conference on decision and control. Maui: IEEE, 3, 2252–2257. doi: http://doi.org/10.1109/cdc.2003.1272953
  18. Troger, H., Zeman, K. (1981). Application of Bifurcation Theory to Tractor-Semitrailer Dynamics. Vehicle System Dynamics, 10 (2-3), 156–161. doi: http://doi.org/10.1080/00423118108968660
  19. Troger, H., Zeman, K. (1984). A Nonlinear Analysis of the Generic Types of Loss of Stability of the Steady State Motion of a Tractor-Semitrailer∗. Vehicle System Dynamics, 13 (4), 161–172. doi: http://doi.org/10.1080/00423118408968773
  20. Lyapunov, A. M. (2000). Obshhaya zadacha obustoychivosti dvizheniya. Cherepovets: Merku­riy-PRESS, 386.
  21. Shinohara, Y. (1972). A geometric method for the numerical solution of nonlinear equations and its application to nonlinear oscillations. Publications of the Research Institute for Mathematical Sciences, 8 (1), 13–42. doi: http://doi.org/10.2977/prims/1195193225
  22. Kholodniok, M., Klich, A., Kubichek, M., Marek, M. (1991). Metody analiza nelineynykh dinamicheskikh modeley. Moscow: Mir, 368.
  23. Rokar, I.; Obmorshev, A. N. (Ed.) (1959). Neustoychivost' v mekhanike. Moscow: Izd-vo inostr. lit., 287.

Published

2018-05-31

How to Cite

Popivshchyi, V., Bezverkhyi, A., & Tatievskyi, D. (2018). Investigation of road train divergent stability loss when moving along a program trajectory. Technology Audit and Production Reserves, 6(2(44), 50–55. https://doi.org/10.15587/2312-8372.2018.150924

Issue

Section

Systems and Control Processes: Original Research